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ABSTRACT

A method of general perturbations utilizing trigonometric series is used to
investigate motion in the vicinity of the triangular equilibrium point of the earth-
moon system. The model used is that of the restricted problem of four bodies
for the earth-moon-sun system. In this model the three principle bodies are
periodic, coplanar, and obey the equations of motion. A stable, periodic, coplanar
orbit is calculated. In the synodic system it appears elliptical in shape, having
a semimajor axis of 90,000 miles and an eccentricity of 0.5. The minor axis is
parallel to the earth triangular point line. The mean motion of the particle de-
scribing this orbit is synchronized with that of the sun such that their angular
positions coincide closely whenever the particle crosses one of the axes of the
ellipse. This orbit, although one and one-half times larger, tends to confirm a

conclusion by Schechter, predicting that such an orbit exists.

(Pager 61-5¢¢, ATAA Guidamce, Coutrol and Flisht Dymsuaes Conf- 19€7)

A second orbit is also calculated, This stable orbit is similar in size and
shape, but 180 degrees out of phase with the first orbit. The calculation of a
small unstable coplanar orbit near the triangular point is reported. This result
would agree with Schechter's second conclusionthat small coplanar motions near

the triangular points will grow large.



STABLE PERIODIC ORBITS ABOUT THE SUN

PERTURBED EARTH-MOON TRIANGULAR POINTS

I. INTRODUCTION

In a recent paper! Schechter concluded a stable, periodic, coplanar orbit can
exist about the sun perturbed earth-moon triangular point. The model used for
the moon's motion was that of the variational orbit using de Pontécoulant's nota-
tion for arguments. The present paper confirms the conclusion by presenting a
numerical solution of a somewhat larger orbit, having the same essential fea-
tures of the orbit predicted by Schechter. In addition, a second similar orbit
having a phase difference of 180 degrees is calculated. A linear stability
analysis showed both of these orbits to be stable. The model of the earth-moon-
sun system used in the calculation of the orbits is one in which these three
principle bodies are periodic, coplanar, and obey the equations of motion, The
theory of the moon which is used in this paper corresponds to the part of the
Hill-Brown classical lunar theory containing variational and purely parallactic
terms. Both kinds of terms depend only upon the variational argument, the mean
angular distance between the sun and the moon. The numerical procedure used
to obtain the model yields both types of terms simultaneously whereas they are -
obtained separately, using two completely different procedures, in the classical
theory. The models of Ref. 1 and this paper are thus seen to be essentially in
agreement. A second conclusion of Ref. 1 is that small coplanar motions near
the triangular points will grow large. The present paper agrees with this con-
clusion by reporting the calculation of an unstable periodic orbit near the tri-

angular points,




II. ANALYSIS
The equations of motion used to obtain the periodic orbits of the particle

are:

d’r _ 2 T + 2 s Ps _Ts + 2 ™ (P D1
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All position vectors are referred to the earth and m is the mass of the particle,

put equal to zero in the computation, but kept in the equations for completeness.

r  is the position vector of the particle .
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3 1is the position vector of the moon
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. 1s the position vector of the sun
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m, is the mass of the sun

m, is the mass of the earth

m, is the mass of the moon

pn? = £2 (n,+m) where £ is the Gaussian constant.

t is the time.

A digital computer is used in obtaining solutions for these equations.
No approximations are made in the equations of motion. The masses and mean

motions are given numerical values. The values of the constants used are:




mean motion of the sun, n; = 129597742\38 per Julian Century
mean motion of the moon, n,; = 173255935356 per Julian Century
geocentric gravitational constant, Gm, = 398603x10°m3sec™ 2
the measure of 1 A.U,, a, = 149600x10°m
semimajor axis of the moon, a, = 3.847487965x10%m

my/m, = 1/81.30

332958.087932061

Il

my/m,
The procedure used in obtaining a solution for the earth-moon-sun model as
well as for the periodic triangular point orbits is based on Musen's? method
with the perturbations represented in trigonometric series with numerical
coefficients. A linear stability analysis was made by considering the variational
equation and the stability was determined in the usual way from the character-
istic roots.® The solutions of the equations of motion are given in the following

form (See Figure 1)
r = (1+a)r + Bw (2)

where a and 8 are the components of the perturbations, r_ is the position

o

vector in a fixed reference ellipse and

LTy - @)

Kepler's law is n? a® = u? where n is the mean motion and a is the semimajor
axis of the reference ellipse. Since the only reference ellipses used will have
zero eccentricity, r | = a. The functions « and S are represented by the

trigonometric series
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Z (a9 cos k6 + o9 sin k0) @)

k=0
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B = Z (8L cos kO + B sin kO) ®)

k=0
where 0 = (n;-n))t.

III. SOLUTIONS

Solutions for the motions of the moon and sun are found first. Together
these solutions define the model of the earth-moon-sun system that will be used.
Equations of motion for the moon and sun are obtained by interchanging the
symbols in Equation (1). These equations are solved in the following manner.
Starting with the sun constrained to move in a circular, coplanar, Keplerian orbit
with respect to the earth the equations of motion for the moon are solved.
Trigonometric coefficients, o and 3, describing the moon's perturbed orbit
are thus obtained. The role of the bodies is reversed, the moon's motion is
constrained to move in the perfﬁrbed orbit defined by a and S and the equations
of motion for the sun are solved. The a and 8 coefficients describing the sun's
perturbed orbit are thus obtained. The roles of the bodies are reversed again
and again each time using the latest acquired a and B coefficients to define the
motion of their respective body. Ultimately the values of the a and 3 coeffi-
cients for each of the bodies do not change from one reversal to the next. The
problem is then solved since both bodies, when not constrained, satisfy the

equations of motion and move in orbits defined by their respective o and S




coefficients. This is a particular solution of the three body problem in which
the bodies move in periodic orbits with respect to each other. The period of the

motion is the synodic period of the bodies, P, given by the equation
P = 27/(n; = n,) (6)

The coefficients for the sun solution are given in Table 1. Since the form of the
sun solution is similar to that of the particle, Equations (2), (3), (4) and (5) rep-
resent its position if r, = a = a; and n = n,. For the number of decimal
places given in Table 1, the relative geocentric position of the sun can be ob-
tained to twelve significant figures. In this paper the same accuracy will be
given for all orbits. A plot of the position of the sun is shown in Figure 2.
Table 2 contains the coefficients for the moon solution. Again Equations (2),
(3), @), and (5) represent the position of the moonif r, = a = a; and n = nj.
A plot of the position of the moon is shown in Figure 3. This curve corresponds
to the Hill-Brown theory containing variational and purely parallactic terms.
The sun and moon solutions define the model that will be used in finding periodic
orbits about the earth-moon triangular point. Coefficients describing a periodic
orbit about a triangular point are given in Table 3. This orbit will be referred
to as Orbit I. Linear stability analysis showed this orbit to be stable. Coeffi-
cients for a second orbit, Orbit II, are given in Table 4. This orbit was also
found to be stable. Equations (2), (3), (4) and (5) describe the position of these

orbits if n =n; and a is found from the equations

nZza® = Gnm, (7)



For the constants of this paper r, = a = 3.831841237 x 10®m. The two periodic
orbits are plotted in Figure 4 in the o, 8 coordinate system. The origin of this
coordinate system is located (See Figure 1) at ¢ = 60°, r, = 3.831841237 x 10°m,
These orbits, therefore, go around the triangular point which is in advance of the
moon's position, This triangular point is analogous to the L, Lagrange equilib-
rium point of the restricted three body problem. In the restricted three body
problem the triangular points (L, and L;) for the earth-moon system are located
by the two points making equilateral triangles with the earth-moon positions
forming one side of the triangle. If this definition were used in the present case
the triangular points would describe orbits identical to the moon's orbit shown

in Figure 3. The above method for describing triangular points will not be used
in this paper. It has been found to be more convenient to define reference points
that are fixed in the synodic system. These reference points, R, and R,, are
the two points making equilateral triangles with the center of the earth and the

mean geometrical position of the moon ?M , defined by the equation

_ 1 217_ aS 2m
r, = 2—77.[ rdf = _27‘[ 'r(1+a)2 + B2 dé (8)
0 0

The coefficients in Table 2 were used in this calculation which yielded ?M =
3.844099188 x 10°m, The location of R, on Figure 4 is seen to be a = 3198.970432
x 10°% B =0.0. With this definition of triangular point the a, 8 coefficients for

the orbit implied in Reference 1 are given in Table 5.

IV. DISCUSSION
The orbit described in Reference 1 is plotted in Figure 4 using the coeffi-

cients in Table 5. It appears as an ellipse centered at the triangular point, R,,
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with its major axis perpendicular to a line joining the earth and R, (i.e. parallel
to the S axis). This ellipse has an eccentricity of 0.5 and its semimajor axis is
58,128 miles. The scale used on Figure 4 is one in which the value of a« or 8
equivalent to one corresponds to 2.380990996x10° miles. The motion of the
particle describing this orbit is synchronized with that of the sun such that their
angular positions coincide closely whenever the particle crosses one of the axes
of the ellipse. At epoch (£=0) the sun is on the positive a axis as is the particle.
The period of the orbit is the synodic period of the earth-moon-sun system given
by Equation (6). Orbit I calculated in this paper is elliptical in shape and has its
semimajor axis approximately parallel to the 3 axis. As seen in Figure 4 its
center is not located at the R, triangular point. In this respect it is similar to
the periodic orbits about triangular points that are obtained in the restricted
three body problem. The semimajor axis is approximately 90,000 miles and

the semiminor axis is approximately 44,000 miles-yielding an eccentricity close
to 0.5. The mean motion of the particle describing this orbit is synchronized
with that of the sun such that their angular positions coincide closely whenever

the particle crosses one of the axes of the ellipse.

Orbit II, although having a phase difference of 180 degrees and slightly
smaller in size, is very similar to Orbit I. Its semimajor axis is approximately
88,000 miles and semiminor axis is approximately 43,000 miles giving it an
eccentricity close to 0.5. At epoch the particle for Orbit II is on the opposite
side of the ellipse from the particle for Orbit I. Orbit II is thus seen to be

synchronized with the sun so their angular positions almost coincide when the




particle crosses one of the axes of the ellipse; however, it is 180 degrees out of

phase with Orbit I.

To date these are the only stable periodic orbits for this particular model
of the earth-moon-sun system that have been calculated. Orbit I has enough
similarities to the orbit predicted in Reference 1 that it may indeed be the same

orbit.

An unstable periodic orbit has been calculated about R, for the same model
of the earth-moon-sun system used in this paper. It is very close to the trian-
gular point remaining within 3100 miles of the point during its orbit. Making
two loops about the R, point per synodic period, it is similar in geometry to a
previous orbit shown by Kolenkiewicz and Carpenter®. This orbit agrees with
the conclusion, also made in Reference 1, that small coplanar motions near the

triangular points will grow large.
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TABLE 1

Three body sun solution, ¢ = 0°

al®) x 108 B x 108
0.045105 0.000000
30.949868 31.492851
~0.004947 -0.005012
0.047329 _ 0.047319
-0.000005 -0.000005
0.000184 0.000183
0.000000 0.000000
0.000001 0.000001
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TABLE 2

Three body moon solution, ¢ = 0°

k a,(®) x 10 B x 106
0 -906.915740 0.000000
1 287.606767 -609.076345
2 -7173.506863 10202.254541
3 -7.507078 7.212259
4 6.028443 5.719334
5 -0.003392 0.005816
6 0.032454 0.027566
7 0.000011 0.000025
8 0.000187 0.000163
9 0.000000 0.000000
10 0.000001 0.000001
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TABLE 3

Periodic Orbit I, ¢ = 60°

k al® x 108 al® x 108 Bl x 108 B x 10°

0 -19171.568123 0.000000 74753.542768 0.000000
1 187801.135978 17178.314916 -13120.769748 -377986.165218
2 11131.030603 -3722.872058 2352.545921 18027.013465
3 -2874.472418 737.568028 -637.564775 -2521.769547
4 582.134781 -176.988257 173.574850 518.179570
5 -128.327707 47.337357 -46.872029 -110.607813
6 26.570848 -12.692022 12.244230 24.010789
7 -5.830085 3.271408 -3.092692 -5.355760
8 1.327555 -0.827212 0.781757 1.245872
9 -0.314593 0.214693 -0.205945 -0.299764
10 0.075554 ~0.058253 0.056669 0.072270
11 -0.017829 0.016064 -0.015680 -0.017002
12 0.004114 -0.004335 0.004214 0.003918
13 ~0.000955 0.001136 ~0.001100 -0.000914
14 0.000230 -0.000296 0.000288 0.000222
15 ~0.000057 0.000080 -0.000078 -0.000055
16 0.000014 -0.000022 0.000022 0.000013
17 -0.000003 0.000006 ~-0.000006 -0.000003
18 0.000001 ~-0.000002 0.000002 0.000001

12




TABLE 4

Periodic Orbit II, ¢ = 60°

k a,l® x 108 a,(® x 106 Bl x 108 B x 106
0 -18160.912624 0.000000 72212.688988 0.000000
1 -183627.357659 -16818.088205 11392.917179 370250.263893
2 10460.900708 ~3371.790401 2116.289582 17696.741894
3 2715.813738 -648.117571 563.594410 2418.999900
4 544.831763 -152.630065 151.103055 487.952665
5 114.117818 -40.353414 40.270023 102.700732
6 24.309814 -10.697742 10.365541 22.014409
7 5.274431 -2.716444 2.571492 4.851307
8 1.187793 -0.674485 0.637277 1.115552
9 0.278619 -0.171971 0.164972 0.265686
10 0.066360 -0.046021 0.044817 0.063541
11 0.015564 -0.012554 0.012271 0.014861
12 0.003576 -0.003350 0.003259 0.003409
13 0.000826 -0.000865 0.000838 0.000792
14 0.000198 -0.000222 0.000215 0.000192
15 0.000049 -0.000059 0.000057 0.000048
16 0.000012 -0.000016 0.000016 0.000012
17 0.000003 ~0.000004 0.000004 0.000003
18 0.000001 -0.000001 0.000001 0.000001

13



TABLE 5

Triangular point periodic orbit from Reference 1, ¢ = 60°

k () x 108 af® x 106 B x 108 B x 108
0 3198.970432 0.000000 0.000000 0.000000
1 122066.820297 0.000000 0.000000 -244133.640594

14
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Figure 1. Coordinate System
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